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Analysis of Dielectric-Loaded Cavities Using
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Abstract—An orthonormal-basis method to analyze dielectric- leads to a standard eigenvalue equation. As we will show, the
loaded cavities is proposed. Resonant frequencies and fields are ob-peculiarities of our approach may give some advantages at

tained by solving an eigenvalue problem in which the modes of an gqcific cases and provide high numerical precision, which is a
auxiliary problem define the orthonormal-basis that is used to ex- . .
requirement to model higty resonators.

pand the fields of the original problem. The merit of our approach - - .
is to take advantage of some mathematical properties to develop ~ First, we present the theoretical formulation of our method

a computationally efficient and versatile method. The accuracy of and we discuss some considerations to implement the method

the method is demonstrated by comparing our results with other and the numerical advantages that can be obtained. We then

results available in the literature. focus on different examples to compare our results with others
Index Terms—Dielectric resonators, moment methods. reported in the literature.

|. INTRODUCTION Il. THEORETICAL FORMULATION

od From Maxwell’'s equations, harmonic magnetic and electric

N THIS PAPER, we develop an orthonormal-basis meth _ 1 ) o X
specifically well suited for dielectric-loaded cavities. Onc&€!ds H andE in an inhomogeneously dielectric-filled cavity
tisfy the differential equations

Maxwell's equations are written to obtain the frequencies arg

fields of inhomogeneous cavities by solving an eigenvalue 1 w?
problem, we take the modes of an auxiliary problem as an {V X L (r)V X 0} } H=—-H (1)
orthonormal basis to expand the fields of the original problem. 1 " w2
Combining such an expansion with the method of moments, {5 (r)v x [V x 0]} E= C—2E 2

we obtain a matrix representation of the differential equation

whose eigenvalues and eigenfunctions are the frequencies @i@re an isotropic and nonmagnetic medium is assumed, en-
the fields of the cavity modes, respectively. Our approach takggsed by a perfect conductor, whose relative dielectric permit-
advantage of some mathematical properties and leads t@vay is «,(r), and where: andw are the velocity of light and
computationally efficient and versatile method as a function @fe angular frequency, respectively.

the appropriate choice of the auxiliary problem. Here, we focus|n addition to (1) and (2), the fieldH andE have to satisfy

on isotropic and nonmagnetic media, but the method could #g equations

extended to cover anisotropic and magnetic media as well.

The orthonormal-basis method developed here shows a clear VH =0 3
formal parallelism with the bi-orthonormal-basis method previ- Ve, (r)E] = 0. (4)
ously developed to analyze inhomogeneous waveguides [1], [2].

Dielectric-loaded cavities find increasing applications as Since our interest is in inhomogeneous cavities and (4) limits
microwave filters in satellite and mobile communicationghe formulation of straightforward field expansions, it is worth-
because of their small size, low loss, and temperature stehile to use the displacement fieldl to formulate the problem.
bility. The tools that are being used to simulate such cavitidhe differential equations thd? has to satisfy are
are basically finite-element techniques [3], finite-difference 1 W2
techniques [4], [5], and moment methods [6]-[9]. Among the {v X [V X _o} } D=—-5D (5)
moment-method techniques, the main differences arise from er(r) ¢
the integral or differential equation to be solved and the basis
functions that are used for the expansion of the fields. In O
case, the formulation of the problem is rather compact a

VD =0 (6)

r cavities bounded by perfect electric conductors and filled
th a nonabsorbent medium, i.e,,(r) is a real function, we

can define two inner products for the magnetic and displacement
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where x denotes the complex conjugatedy is the vacuum - 1

impedance, and is the volume of the cavity. Although, at Lp =V x |V x ENDY) O]

this moment, we consider the specific case of a nonabsorbent s

medium, we shall see later that our method can be used to obtain LpD; = ﬂf)i

the resonances of cavities filled with absorbent media. In this o ¢

paper, we consider nonmagnetic materials and, for this reason, <Di | Dj>f) = ;5

we can chose the definition of the inner product for the mag- VD, = (14)

netic field equal to the ordinary scalar product. The different
definition of the inner products for the displacement and mag; . . .

here(w;/c)? are the corresponding eigenvalues, i.e., the res-
netic fields is not arbitrary, but particularly useful because, in

onant frequencies of the auxiliary system. This auxiliary or-
this way, if we express (1) and (5) in operator form as follows;
Sthonormal-basis equation will be used to obtain a matrix repre-

2 sentation of the problem under consideration. First, we use the
LuyH = ﬁH auxiliary moded; andD; as the basis functions to expand the
[ fields H; andD; of our problem and let
Lg=Vx|——=Vxo 9) .
&r(r) H, =Y din, (15)
w? k
LDD - ?D D,L' = Zaﬁ f)k (16)
I =Vx |Vx— o‘| (10)
L en(r) whereall andal are the coefficients of the expansion. These

expansions insure thal; and D; satisfy the outer boundary
conditions and (3) and (6). Second, we substitute (15) and (16)
(9) and (10) and, following a standard Galerkin moment
method, we use the same auxiliary basis functions as testing
functions and we take the inner products as defined in (7) and
(8). This results in

then we find that the linear operatokg; and Lp are self-ad-
joint, with respect to their corresponding inner products, an
that their eigenfunction#l; and D; define two orthonormal-
basis equations as follows:

(H; | LuH;)n = (LuH; |H;)n
(H; |H))u = 6;; (11) S Lugji all = w_?aH,
(Di|LpDj)p = (LpD; |D;)p IR T e T
D,,' D — 045 12 )
( | ]>D 5,1 ( ) Lij — < y |LHHk>I:I (17)
Inconsequence, the eigenvalgegc)? will be real and the eigen- I p w p
functions can be chosen to be real without loss of generality. Z Djk Qi c_za Lj

The above basic equations provide the framework of the or- ~ ~
thonormal-basis method that we have developed to obtain the Lpjr = <Dj |LDDk>1~)- (18)
frequencies and fields of inhomogeneous cavities. If we provide
a matrix representation of the above operators, then the problgrs 1,2, 3. .., which can be written in matrix form as follows:
is reduced to a standard diagonalization process of the self-ad-

joint operatord.y andLp. Thus, if we want to solve a problem [Lu] [GH} _ w_Z [GH} (19)
defined by a cavity of volumé& bounded by a perfect electric c?

conductor and filled with an inhomogeneous medium defined [Lp] [an} _ w_2 [GD} (20)
by .(r), all that we need to know is the solution for the same c? '

cavity when it is filled with a medium characterized By(r).
We will refer to this second cavity as the auxiliary system, wh|
may correspond to an empty cavity, a homogeneous caV|ty,
an inhomogeneous cavity. The auxiliary system will be defin ;
by the operatord s andLp and their eigenfunctions define the
orthogonal-basis equatiof#l, }>°, and{D,}32, as follows:

u;r and Lp;; are the elements that define the matrices
] and [Lp], respectively, and where!l andal are the
ments of the column matrickg!] and[aP]. These matrices
H] [Lp], [aH], and[aP] represent the differential operators
LH, Lp and the eigenfunctionH andD, respectively. Thus,
(19) and (20) are a linear matrix representation of the differen-

tial equations (1) and (5). By solving the algebraic eigenvalue

Iuy=Vx|—Vxo problem defined by (19) and (20), we obtain the frequencies

&r(r) and the fields of the cavity modes. In fact, we do not need to

T @? - solve both equations. As we shall see later, the best option

LuH; = C_2H7? for the type of problem we are considering here is to start by

<P~I' |ﬁ- —5 solving (19). The diagonalization of (19) provides the resonant

g Y frequenciesw; and the magnetic field¥I; in terms of the

VH, =0 (13) expansion coefficients!; . Using Maxwell’'s equations, we can
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then obtain the expansion coefficients of the displacement advantage with respect other modal methods in which a gener-

fields D; alized eigenvalue equation has to be solved with non-Hermitian
o matrices [6]. The computing time difference between solving a
a,}? = w—jag (21) standard eigenvalue problem and solving a generalized eigen-

value problem is around 15% less. If we consider the amount

with no need of solving (20) to obtald; and the corresponding of available memory in the computer, e.g., 1.6 GB, the use of

electric fieldsE;. a real and symmetric matrix permits to diagonalize a matrix

of the order of 20 723 20 723, while if the matrix is real, but
lll. | MPLEMENTATION OF THE METHOD nonsymmetric, the maximum order would be 14 6584 654

In order to implement the method, we need to calculate t gd, in addi(t)ion_, the diagonal?zation_of the first matrix take_s

elementd.s 1, andLp ;i to proceed later to the diagonalization]?SS than 50% time than what Is required by the Secoﬂd matrix.
herefore, the implementation of the orthonormal-basis method

of the matrices. Although (17) and (18) give formal expressmrgﬁat we present in this paper combines the possibility of using

for these elements, we need to develop such expressions in tegpasr er number of basic functions with less computing time re-
of e.(r) andé,.(r) that define the problem and auxiliary system. 9 puting

- i ts than other similar modal methods.
If we consider the operatolsy = Ly — Ly andfp = Lp — quirements . o . .
E]\;V ! P H H b b The choice of the auxiliary basis is an important point for an

efficient implementation of the method. On the one hand, one
has to consider the number of basis functions that may be re-

e(r)  E.(r) uation of the matrix elements. If the memory available in the
computer is of the order of 1 GB, it appears worthwhile to focus
we find that on an easy and analytical evaluation of the matrix elements, and
then the accuracy will be determined by the number of basis

(24) functions used to expand the fields.

Although we have considered up to now the case of cav-

) (25) ities filled with nonabsorbent materials, it is possible to ob-
b tain, as well, the resonances of lossy cavities using the modal
and substituting (22) and (23) into (24) and (25), we obtain method developed here. The key point is to realize that all what
is needed to obtain a matrix representation of the operator of

™

1 1
Fu=Vx (5 © Tz (r)>v X 0 (22) quired to achieve a given accuracy of the solution and the size
" " of the matrix that can be diagonalized. On the other hand, one
1 1 i i -
Fp =V x|V x B ) O] 23) has to consider as well the interest of an easy and accurate eval

w2 N .
Lujr = c—;5jk + <Hj |FHHk>ﬁ
<9

@3 N .
Lpjr = Ot + <Dj |FDDk>

&2 1 1 L a . . . . -
Y . R P given problem is the right choice of the auxiliary system. If
Luje = c2 Ok + Wik / (ar ér DiDydV (26) the modes of the auxiliary system defines an orthonormal basis,
v then the expansion of the fields in terms of the auxiliary modes

5)? -9 1 1) x.x and the application of the Garlekin moment method permit to
Loji = 30+ / (Z Bl E) DiDidV. 21 opraina rr?zftrix representation of the operator, even fo? the case
v of a lossy cavity. Now, none of the differential operatdrg

Equations (26) and (27) permit a calculation of the elemer@§dLp will be Hermitian and some of the previously referred
Lujx and Lp;,. in terms of the frequencies and the electriBumerical properties, which appeared as specific advantages of
fields of the modes of the auxiliary system. The key contribi@ur approach, will not apply. However, the problem to be solved
tions are the second terms, which can be regarded as coupifngtill @ standard linear eigenvalue system. In any case, we can
coefficients between modes of the auxiliary basis. Such a caiways carry out most of the simulation and the design work by
pling exists because of the differences between the dielectieglecting the cavity losses. The losses can be taken into ac-
function of the problem and that of the auxiliary system, i.ecount in the final part of the calculation, either following the
the factor(e,-! — £;71). These equations show with clarity somé@bove approach or a perturbative method [10].
important properties. On the one hafhbly] is a Hermitian ma-
trix since Ly = (Luy;)*. In addition, the eigenfunctions of IV. NUMERICAL RESULTS AND DISCUSSION
the auxiliary system can be chosen to be real to insure thatall =~ ) i ) )
the productﬂj;ff)k are real as well. Thus, tHés;] matrix will A. Cylindrical Cavity Loaded With a Dielectric Rod
be real and symmetric. On the other hafid; | is not a Hermi-  The first case that we want to consider in order to test the
tian matrix. For this reason, if we want to implement the methadethod and to discuss its implementation is a cylindrical cavity
efficiently, the best option is to start solving the problem failoaded with a dielectric rod that extends along the cavity length
the magnetic field. This option permits to take advantage of thgee Fig. 1(a)]. This is an inhomogeneous cavity with an analyt-
properties of thg L] matrix. Later, we can compute the dis4ical solution, thus providing us with the possibility of an accu-
placement and electric fields using (21). rate evaluation of the precision of the method.

The way in which we implement the method leads to a stan-We have chosen the modes of an empty cylindrical cavity as
dard algebraic linear eigenvalue problem where the matrix rejppe auxiliary basis to implement the method. These auxiliary
resentation of the operator is real and symmetric. This is a cleaodes are denoted typically &BE,,, and TMyy,, [11].
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Dielectric rod 4 Dielectric disk TABLE |
P . o COMPARISON OF THELOWER ORDER RESONANT FREQUENCIES(IN
: ! GIGAHERTZ) FOR THE CYLINDRICAL CAVITY LOADED WITH A DIELECTRIC
v H i ROD (¢ = 37.6,4 = 1.00076 cm, B = 1.27 cm, H = 1.397 cm)
2] '
; H LT - . .
g i v L Mode  Analytical Present Technique Other method [12]
: solution
z H, : Absolute value  Relative error (%)
1.
5 j 5 j TMoo 149732 1.49738 0.004 147
B B T 243331 243344 0.005 238
@ ) HE, — 2.50206 2.50228 0.009 248
: y : TEon  3.02686 3.02701 0.005 —
] 5 TMao  3.32795 3.32818 0.007 —
f Dielectric disk | TMon 338932 338960 0.008 338
, H Lo Cond;lctor plane HE;;  3.42508 3.42552 0.013 3.38
Ll |&! Voia ] TMoo ~ 3.59190 3.59215 0.007 —
Loy
e | HE;  3.81776 3.81820 0.012 3.79
" ey
B : iliary modes, our results are better than others reported in the
© (d) literature obtained with a finite-difference time-domain method

Fig. 1. Configuration of different dielectric resonators. (a) Cylindrical cavit){lz]’ [1?’] or with a f'mte_elem_e.nt method [14]. However, by
loaded with a dielectric rod. (b) Cylindrical cavity loaded with a dielectric diskncreasing the number of auxiliary modes, the errors decrease
(c) Dielectric combline resonator with a cylindrical enclosure. (d) Dielectrigyrther, beyond 0.1% when 1000 auxiliary modes are used.
disk resonator on a conductor plane. In this case, the calculations take several seconds. Table |
compares the nine lower resonant frequencies obtained with
our orthonormal-basis method with the analytical solution
obtained with a standard boundary value method. We can see

S o8 that the difference is always smaller than 0.02% when 5000

g 0.6 auxiliary modes are used to expand the fields. Now it takes

g 15 min to solve each azimutal order. We include in Table | the

g 04 values reported in [12] and [13].

g o Since the method provides the modal fields in addition to the
frequencies of resonance, we have included in Fig. 3 some of

0 them as an example. In this case, we show the magnetic and elec-
0 200 400 600 800 1000 tric fields of theHE;;; resonant mode. This is a hybrid mode

Number of modes: M whose fields are a combination of TE and TM modes of the
| i . ¢ eviindrical | daduxiliary basis of azimutal and longitudinal orders= 1 and
Fig. 2. Relative error of the resonant frequencies of a cylindrical cavity loa _ ; ; ; ;
with a dielectric rod as a function of the number of modes of the auxilia@ =1, respecuvely. '_:Ig' 3 includes two p|OtS FO IHUStr",ﬂe the
system. right behavior of the fields around the boundaries. In Fig. 3(e),
we can see a case in which theeomponent of the electric field

We consider each azimutal and longitudinal ordersand is normal to the dielectric surface and it exhibits a discontinuity.

» separately since the coupling between modes of differdfit F19- 3(f), we can see a case in which it is parallel to the
azimutal and longitudinal orders is zero. In addition, we tak¥Pundary and the field is continuous, although a Gibbs effect
the dependence of the modes on the azimutal angle in the foiPWS UP-
exp(£jng¢). Although this choice makes the auxiliary modes o ] ) ] o
to be complex, thé.g operator will remain real and symmetricB- CYlindrical Cavity Loaded With a Dielectric Disk
because of the specific form of (26). The second structure that we analyze is shown in Fig. 1(b)
The choice of this auxiliary system permits an analytical evadnd consists of a cylindrical cavity symmetrically loaded with a
uation of the elements of the matrix that representdh@per- dielectric disk. In this case, we use the same auxiliary basis than
ator. Thus, the precision of the method will be determined by the the previous case, i.e., the modes of the empty cavity. This
number of auxiliary modes used for the expansion of the fieldgption again leads to analytical expressions for the elements of
Fig. 2 shows the convergence of the solution as a function thie matrix L.
the number of auxiliary modes at a constant azimutal order This inhomogeneous cavity has been extensively used to test
for five modes of different azimutal and radial symmetries. and compare different methods of analysis. We can compare
We can see in Fig. 2 that a relative error smaller than 18&ur results with others obtained with a mode-matching method
is achieved with less than 100 auxiliary modes, which is [45], a finite-element method [14], a finite-difference time-do-
practically instantaneous calculation in a Cray-Silicon Graphiosain method [12], [13], and a frequency-domain finite-differ-
Origin-2000 machine. Even with such a small number of auence method [16]. Table Il presents a list of all these results. In
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Fig. 3. Field distribution of th&IE,,, mode of a cylindrical cavity loaded with a dielectric rod. (a) Magnetic fielpat 7 /2. (b) Electric field at¢ = 0.
(c) Magnetic field at: = 0. (d) Electric field atz = H/2. (e) z-component of the electric field along theaxis atz = H/2. (f) z-component of the electric
field along they-axis atz = H/2.

the fourth column, we include the relative difference betweatrical enclosuréd > L, as shown in Fig. 1(c). In this case, we
our results and the results provided in [16]. In [16], an iteratiieave chosen the same auxiliary modes as in previous examples.
method is used to solve the system of equations and the conveM/e find a good agreement between our results and those ob-
gence with the number of iterations is insured, although theined with a rigorous mode-matching method [17]. Following
are other approximations in the method, such as the size of the notation of [17], Fig. 4 gives the frequencies of resonance of
grid, that may be responsible for the differences that we find the TMy;, TMy2, TE(;, HE11, andHE;» modes as a function
Table Il with respect to our method. In the case of our method, all the radius of the dielectric rod, which is in good agreement
the figures of the numerical results shown in Table Il should lveth [17].
virtually correct since the integral have been computed analyti-The evaluation of losses in dielectric loaded resonators is an
cally and the convergence with the number of auxiliary mod@&sportant point because, in general, dielectric loaded resonators
has been insured. Our results have been computed with 10 ®@9e very low loss. It is precisely this property that is the most
auxiliary modes, which takes 140 min per azimutal order.  appealing feature of dielectric combline resonators when com-
Atthis point, itis worthwhile to discuss some characteristics gfared to conventional combline resonators. As was mentioned in
the orthonormal-basis method that we present here. We find t&action 1lI, the orthonormal-basis method that we present here
the method works with the same efficiency both when the fieldsin be applied to cavities loaded with lossy dielectrics, i.e., di-
of the resonances have TE or TM structures and when they afectrics with a loss tangenin § different from zero. In order
hybrid modes, and that there is no specific difficulty to deal witto illustrate this feature, we have computed the complex eigen-
geometricalsingularitiesatdielectriccornersand, therefore, theaues of the non-Hermitian operatbgz corresponding to a di-
is no need to smooth the corners to model a dielectric resonatectric combline resonator with a lossy dielectric red &
In addition, our method is free of spurious modes. 36.0,tan§ = 4.0 x 107°, H = 32.00 mm, B = 19.05 mm,
L = 30.48 mm, A = 7.112 mm). A complex eigenvalue gives
rise to a complex frequency of resonance- w’ + jw’, whose
imaginary part determines th factor@ = w’/(2w”). In this
The third example that we consider is a dielectric comblirexample, we comput€ = 45 460 for the fundamental reso-
resonator defined by a dielectric rod, mounted in a longer cylinance ¢’ = 1.879 GHz). Since the cavity is a low-loss system,

C. Dielectric Combline Resonator
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TABLE I 5.5

COMPARISON OF THELOWER ORDER RESONANT FREQUENCIES(IN 50

GIGAHERTZ) FOR THE CYLINDRICAL CAVITY LOADED WITH A '

DIELECTRIC DISK (g, = 35.74, A = 0.8636cm B = 1.295cm, L = 4.5
0.762cm H; = H, = 0.381cm)

TE,,, cavity mode

TE,,, cavity mode

4.0
&
Mode [15] Present Technique Other methods :E 3.5
Ned 3.0
Absolute value Relauve( 5:)fference [13] [12] [14] s TE,), cavity mode
TEo 3.429 3.444 0.44 3435 3.53 3.428 .
TE, 5412 5.458 0.85 5.493 — 5.462 2.0
TE;;  5.908 5.944 0.61 — — 503 40 45 50 55 60 65 70 75 80 85 9.0
TEo4 7.497 7.568 0.94 — — — B/A
TEos 8.015 8.100 1.05 — — —
TEos 8.581 8.649 0.79 — — —
™ asi 4568 o5 2601 s st Fig. 5. Normalized resonant wavenumbers of a shielded dielectric disk as a
TM::; 6361 €384 036 i - 2 function of the normalized radius of the enclosure.
TMo3 7.254 7.323 0.95 — — 7.26
TMps  7.641 7.685 0.57 — — — . . . .
TMps  9.093 9.169 0.83 — — — the enclosure introduces always its cavity modes as additional
Moo 9982 10031 08 B ~ 7 resonances, which may exhibit a strong coupling with the res-
HE, 4205 4.251 1.09 4271 390 4224 onances of the dielectric disk when they are close. In conse-
HE» 4310 4358 1.11 4373 4.17 4.326 . . .
HE;  5.662 5.753 159 — — 5.74 guence, in both situations, one needs to control the effects of
o e s — = ¥ sucha coupling either to know which geometries may modify
e 72l 7269 o — - 0 substantially the properties of the disk as a resonator or to know
2 3 A . — — B .
HEn 5311 5.353 0.78 — — 533 when we may wrongly compute the resonances of the ideal un-
W T 7o % — T shieldeddisk. The dependence of the resonant modes on the size
HE»  7.355 7423 0.92 - — - of the enclosure is specifically important in this case.
HE»s 8.208 8.280 0.87 — — — . . . .
HE; 5843 5.896 0.90 — - 5.85 In order to formulate the method, a shielded dielectric disk
ggﬁ 656 b e - - 64 can be regarded as a dielectric combline resonator described in
HE;,  8.098 8212 1.40 - — — Fig. 1(c). NowH and B will be larger thanL and A. Fig. 5
HEss 8.453 8.525 0.85 — — — .
HE. 9365 0.440 0.80 _ _ _ presents the normalized wavenumber of the resonances of the
system as a function of the normalized radius of the enclosure.
The present method gives the resonances of the disk and cavity,
0.5 and shows the strong coupling that some of them exhibit. We
can identify in Fig. 5 the resonances of the disk as those that are
0.4k virtually independent of the enclosure radius. Fig. 5 includes
. T the resonances of an empty enclosure (dashed lines) for an eas
TE, TM,
< 03 So~~ é identification of the empty cavity modes. Our results show a
S 02 S Tl good agreement with those obtained with a boundary-element
™, HE\\ S —— method [18].
01 11&12 ==
"'“""7-'-"-'-7-'-“;‘ E. Rectangular Cavity Loaded With a Dielectric Disk
00.2 03 0.4 0.5 0.6 The last example that we want to include is the case of a rect-
AIB angular cavity loaded with a dielectric disk (see Fig. 6). This

ired . el o case is closely related to the cylindrical cavity loaded with a di-
Fig. 4. Normalized resonant frequencies of a dielectric combline resonator ; ; ; ;
a function of the normalized radius of the dielectric rod. éfectric disk that has t,)een previously Q|scu§sed. The use of a

rectangular enclosure instead of a coaxial cylinder makes an ac-

) ) ) ) curate simulation rather more difficult. However, the rectangular
we can validate this result with a standard perturbative calculg;ciosure has a specific interest when coupling several cavities

tion, using the fields of the ideal cavity to compute the losses §f gesign high-order filters because of the modeling of the cou-
the dielectric. Thus, we obtai@ = 45 440, which is in good pling slots and good mechanical stability.

agreement with our previous calculation. To model this case, we have chosen the modes of an empty

rectangular cavity as the auxiliary basis, i.e., the well-known
TEnmp andTM,m, modes [19]. As before, this choice permits
The resonant frequencies of a dielectric disk placed on a c@am analytical evaluation of the elements of the matfrx.

ductor plate [see Fig. 1(d)] can be found with the present methodJsing the present technique, no staircasing procedure is re-
by adding a metallic enclosure to define a finite cavity. In songuired to simulate curved dielectric surfaces. The implementa-
cases, such an enclosure has no real existence and we wiltibe of the method for this case has an important difference with
interested in being able to insure that it has no significant ekspect to previous cases. Now, the modes of the problem and
fect on the true disk resonances. In other cases, the enclogbesauxiliary modes do not share a given symmetry and, as a con-
can be a physical shield by being part of the system. Howevsequence, the diagonalization of the matrix cannot be reduced

D. Dielectric Disk Resonator on a Conductor Plane
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Fig. 6. Configuration of a dielectric disk resonator in a rectangular cavity.

TABLE Il
COMPARISON OF THERESONANT FREQUENCY (IN GIGAHERTZ) OF THE
HEM;,5s MODE FORDIFFERENT DIELECTRIC DISKS IN A RECTANGULAR
ENCLOSURE(A = B —2.54cm, C' = 2.377cm, H = 0.699 cm, ¢, = 38)

Disk size Theroretical simulations Experimental
Present
R (cm) L (cm) Technique [5] [19] [20] [20]
0.831 0.554 4.391 4.388 4.40 4.388 4.382
0.875 0.584 4.168 4.163 4.17 4.161 4.153
0.961 0.643 3.762 3.725 3.78 3.721 3.777
(1]
(2]
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Fig. 7. Modal field distribution for theHEM,,s mode of a dielectric disk [8]

resonator in a rectangular cavity, at the central cross section of the disk with
A=B=254cm,C =2377Tcm,H =0.699cm,s, = 38 R = 0.875cm,
andL = 0.584 cm. (a) Magnetic field. (b) Electric field.

[9]
to the diagonalization of a series of submatrices, as we did in
the previous cases considering each azimutal order separatdff!
Thus, to achieve a given numerical accuracy, we need a relzf)ﬁ]
tively higher number of modes than in previous cases.
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We have used 20 000 auxiliary modes to compute the results
that we present in Table Ill. Table Il is a comparison between
our results and the data obtained with a finite-difference time-
domain method [5], [20] and a mode-matching method [21], as
well as with the experimental values reported in [21]. A very
good agreement is shown in Table Ill. In our simulation, we have
assumed that the support of the dielectric diskdyas 1, as in
the simulations we use for comparison. Fig. 7 gives the modal
field distribution for the firstHE{;s mode, which agrees with
the results reported in [20] and [21].

V. CONCLUSION

The orthonormal-basis method that has been formulated in
this paper is an efficient method to analyze inhomogeneous cav-
ities.
with theoretical and experimental data available in the literature
for both cylindrical and rectangular enclosures filled with di-
electric rods. Our theoretical approach has not been limited to
lossless dielectrics and we have provided an example to demon-
strate the capability of the method to include the dielectric losses
directly in its formulation. The method is free of spurious modes
and uses no staircase approximation to deal with curved surfaces
of the dielectrics. In fact, in most cases, such as in the examples
that have been provided in this paper, the method can be formu-
lated analytically, insuring a high numerical accuracy; the finite
number of modes used for the expansion of the fields being the
only numerical approximation.

The method has been verified by comparing the results
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